CLG-PBZ3.00		Page 1 of 15
Title: Phenylbutazone Residues in Bovine Kidney by ELISA.		
Revision: .00 Replaces: NA Effective: 11/8/2002		

Contents

A.	INTRODUCTION	2
В.	EQUIPMENT	2
C.	REAGENTS AND SOLUTIONS	3
D.	STANDARDS	3
E.	SAMPLE PREPARATION	4
F.	ANALYTICAL PROCEDURE	5
G.	CALCULATIONS	7
Н.	HAZARD ANALYSIS	8
l.	QUALITY ASSURANCE PLAN	9
J.	WORKSHEET	11
K.	REFERENCE	14

CLG-PBZ3.00		Page 2 of 15
Title: Phenylbutazone Residues in Bovine Kidney by ELISA.		
Revision: .00 Replaces: NA Effective: 11/8/2002		

A. INTRODUCTION

1. Theory

This procedure is used to screen bovine kidney samples for Phenylbutazone residues at concentrations of 50 ppb or higher. Cotton swabs are inserted into kidney samples to absorb tissue fluids. The swabs are extracted with a dilute acidic phosphate buffer and analyzed using a commercial Phenylbutazone ELISA kit (PBZ ELISA kit, Neogen Corporation). Samples exhibiting absorbances lower than an estimated minimum for a 50 ppb fortified tissue are identified as positives.

2. Applicability

The method is applicable to bovine kidney.

B. EQUIPMENT

1. Apparatus

Equivalent apparatus may be substituted for the following:

- a. Test Kit. PB ELISA kit. Cat. # 9 104710 (NEOGEN Corporation, ELISA Technologies Division, 628 E. 3rd Street, Lexington, Kentucky 40505). The kit is composed of 12 eight-well strips in a plastic (6x12x1.5 cm) holder. Each strip is removable from the kit. In addition, the strip of wells may be broken so that a partial strip may be used for analysis.
- b. Plate Reader. Biotek Autoreader ELx 808. Equipped with650 nm filter and a printer (ELISA Technologies). The reader is calibrated using an U.S. National Bureau of Standards Microplate Reader Calibration Plate Accuracy Test Filter
- c. Centrifuge. International Equipment Company B-22M Superspeed Refrigerated Centrifuge with Rotor #876, (Refrigeration is not required) International Equipment Company, Clinical Centrifuge (CAT #20671-007, VWR Scientific, San Francisco, CA).
- d. Eppendorf pipettors Variable volume pipettes were obtained from Fisher Scientific: 2-20 μ L (Cat. #05-402-46), 10-100 μ L (Cat #05-402-48), 50-200 μ L (Cat. #05-402-49), 100-1000 μ L (Cat. #05-402-50) and 500-2500 μ L (CAT. #05-402-51).
- e. pH meter Orion 601A Calibrated at pH 4 and 7.
- f. Transferpette, Multichannel Pipettes. Brinkmann, 50-300µL #50-08-030-7 (CAT #53512-376 VWR Box 39396 Denver, CO 80239).
- g. Glassware Volumetric glassware includes 10-mL, 25-mL, 50-mL and 100-mL flasks. CLASS A.

CLG-PBZ3.00		Page 3 of 15
Title: Phenylbutazone Residues in Bovine Kidney by ELISA.		
Revision: .00 Replaces: NA Effective: 11/8/2002		

- h. Pipettes 0.5-mL, 1.0-mL, 25 mL and 50-mL glass pipettes CLASS A.
- i. Test tubes 16mm x 125mm disposable Borosilicate glass culture tubes, (Kimble).
- j. Test tubes.- 50-mL polyallomer tube with polypropylene screw closure. CAT #3139-0050, (Nalge Company, Rochester NY 14602-0365).
- k. Sterile Cotton-tipped swabs 6" x 1/12" in diameter (two per package) Cat # 10805-154 (VWR Scientific Products).

C. REAGENTS AND SOLUTIONS

1. Reagents

Note: Equivalent reagents may be substituted for the following:

- a. Sodium Phosphate, dibasic, anhydrous. Na₂HPO₄, (Aldrich Chemical Company, Inc., Milwaukee WI 53233).
- b. Potassium Phosphate, Monobasic crystals. KH₂PO₄. (Mallinckrodt).

Solutions

Note: Solutions and solvents may be substituted for the following:

- a. Extraction Buffer (0.2M Phosphate). Weigh 13.6 g of potassium phosphate monobasic, and 14.2 g of sodium phosphate, dibasic into a 1 L class A volumetric flask or graduated cylinder. Dilute to volume with deionized water. Adjust pH to 6.8 with 1M HCl or 1M NaOH solutions. Prepare extraction buffer fresh when it becomes cloudy. The pH should be checked periodically to verify that it is 6.8.
- b. Deionized water.
- c. Methanol, LC-Grade (Fisher Scientific).
- d. 1M HCL (Fisher Scientific).
- e. 1M NaOH (Fisher Scientific).

.

D. STANDARDS

1. Source

Phenylbutazone standard is available from ICN Biomedical Inc., Cat. #153567, Chillicithe Rd, Aurora, OH 44203. Other sources for the standard material may be acceptable.

CLG-PBZ3.00		Page 4 of 15
Title: Phenylbutazone Residues in Bovine Kidney by ELISA.		
Revision: .00 Replaces: NA Effective: 11/8/2002		

2. Preparation of Standards

- a. Stock PBZ Standard Solution 500 μ g/mL in methanol. Accurately weigh 50.0 \pm 0.1mg PBZ standard into a 100-mL volumetric flask. Dissolve and bring to volume with methanol. Stable for two months.
- b. Intermediate PBZ Standard Solution. 250 μg/mL in methanol. Pipet 25 mL PBZ stock standard (a) into a 50 mL volumetric flask and bring to volume with methanol.
- c. Working PBZ Standard Solutions:
 - i. 150 ng/mL. Dilute 30 μL of intermediate standard (b) to 50 mL. with deionized water in a 50-mL volumetric flask.
 - ii. 300 ng/mL. Dilute 60 μL of intermediate standard (b) to 50mL with deionized water in a 50-mL volumetric flask.

Note: These working standard solutions are used to generate the standard curve and for sample fortification.

3. Storage conditions

Store standards (a) & (b) in a refrigerator at 2-8°C, and standard (c) at room temperature.

4. Shelf Life Stability

- a. Stock and intermediate standards are stable for 2 months.
- b. Working PBZ solution (D.2.c) must be prepared fresh daily.

E. SAMPLE PREPARATION

After slaughter, intact kidney samples (one/cow) are frozen and then shipped overnight with the cold-frozen gel-packs to the laboratory. The samples are stored in the freezer at -20°C. Prior to analysis, the samples are brought to room temperature and two swabs are inserted into two separate locations on each kidney sample for 30 minutes to absorb kidney tissue fluids. Swabs are stored at -40°C if not analyzed immediately.

Control tissue

CLG-PBZ3.00		Page 5 of 15
Title: Phenylbutazone Residues in Bovine Kidney by ELISA.		
Revision: .00 Replaces: NA Effective: 11/8/2002		

One pair of control kidney tissue swabs is run with each plate. Control is generally a (store-bought bovine kidney) previously analyzed and found to contain no PBZ. Blended control kidney tissue is stored in plastic bag in a freezer at -20°C.

Fortified tissue

Control kidney tissue (blended) is fortified at three levels (0, 50, and 100 ppb) and one set of swabs at each level is run with each day's samples. The levels are pre-determined to be within the linear range of the ELISA plate based on the conditions of the extraction. The tissue portions are prepared as follows:

Fortification	n Tissue (g)	Amount of PBZ added
50 ppb	4	2.0 mL of 150 ng/mL (D.2.c.i)
100 ppb	4	2.0 mL of 300 ng/mL (D.2.c.ii)

Each fortification level is based on the concentration of PB added to the tissue divided by the total g of product (4 g of tissue plus 2 g of water or standard solution = 6 g total). Approximately 0.3 mL of tissue fluid is absorbed by each pair of cotton swabs per sample and each pair of swabs is then placed in 1.0 mL of phosphate buffer giving an approximate concentrations of 0 ng/mL for control blank, 15 ng/mL for 50 ppb fortification and 30 ng/mL for 100 ppb fortification. Application of 20 μ L of these solutions on each well represents 0 ng, 0.3 ng and 0.6 ng of PBZ, respectively for 0, 50 and 100 ppb fortifications.

F. ANALYTICAL PROCEDURE

1. For Analysis of samples

- a. Place each pair of sample swabs, a pair of control swabs and a pair of 50 ppb control swabs separately in 1.0 mL of 0.2M pH 6.8 phosphate buffer in disposable test tubes (B.1.i) and agitate vigorously for 1 min on a vortex mixer.
- b. Allow the swabs to sit in solution for 5 min with sonication, then agitate again.
- c. After approximately 5 min, squeeze both swabs against the tube sidewall, and discard (2 swabs contain ca. 0.3 mL tissue fluids).
- d. Centrifuge the tubes for 2 min at approximately 1000 RPM.

CLG-PBZ3.00		Page 6 of 15
Title: Phenylbutazone Residues in Bovine Kidney by ELISA.		
Revision: .00 Replaces: NA Effective: 11/8/2002		

2. Control and Fortified Kidney Swab Preparation

- a. Weigh 4 control kidney blanks (4 g each) in 50-mL polypropylene centrifuge tubes as described in section E.2. above. Use one of the four tubes as control.
- b. Add 2.0 mL of 150 ng/mL working standard (D.2.c.i) separately to two tubes and 2.0 mL of 300 ng/mL working standard (D.2.c.ii) to the remaining tube.
- c. Add 2 mL of water to the control tube.
- Agitate tubes vigorously for 1 min using a Vortex mixture and sonicate for 1 min.
- e. Centrifuge tubes for 15 min at 15,000 RPM at 4°C.
- f. Decant each supernatant into another set of disposable test tubes.
 - g. Place two cotton swabs into each supernatant to absorb the kidney/water fluid for approximately 2-3 min.
 - h. Place each pair of sample swabs in 1.0 mL of 0.2M pH 6.8 phosphate buffer in a disposable test tube (B.1.i) and agitate vigorously for 1 min on a vortex mixer.
 - i. Allow the swabs to sit in solution for 5 min with sonication, and then agitate again.
 - After approximately 5 min, squeeze both swabs against the tube sidewall, and discard.
 - k. Centrifuge the tubes for 2 min at approximately 1,000 RPM at 4°C.

3. Analysis

a. Apply 20 µL extract into individual ELISA plate wells.

Note: One of the 50-ppb fortified control extracts must be distributed randomly into 6 wells in order to facilitate estimation of a decision level (see Section G).

CLG-PBZ3.00		Page 7 of 15
Title: Phenylbutazone Residues in Bovine Kidney by ELISA.		١.
Revision: .00	Effective: 11/8/2002	

- b. Following ELISA kit directions, add 180 μ L diluted drug-HRP conjugate solution (HRP) to each well. The HRP solution and EIA buffer are supplied in the test kit and are diluted (1:180 HRP: EIA) or per Kit Instruction. After addition of the HRP: EIA solution to each sample, mix the solutions by gently vibrating the plate on a flat surface.
- Cover plate to avoid possible dust/dirt contamination. Incubate for one hour at room temperature. Shake gently at least twice during the incubation period.
- d. Invert the plate after the incubation period, to remove matrix solutions.
- e. Wash the wells 4 times with (300µL/time) with diluted washing buffer (diluted 1:9 with water and supplied with the test kit). Tamp the inverted plate on a paper towel between washings and make sure that the plate is free from liquid and bubbles prior to adding K-Blue substrate.
- f. Add 150 μL K-Blue -substrate (another reagent supplied in the test kit) to each well. Allow the reaction to proceed for 15–30 minutes with intermittent gentle shaking of plate, especially before taking an optical density (absorbance) reading.
- g. Read results at 650nm on a plate reader. Continue to take readings every five minutes until an optimum absorbency reading (although the absorbency values continue to increase, "optimum" is considered to be between 1.0 and 2.0) is obtained for the control tissue (read against air). Color development may take 20 to 30 minutes.
- Instrumental Settings —

Read plate at 650 nm.

G. CALCULATIONS

Evaluate sample results based on absorbance values for fortified control tissues. The extent of the color development in each well is inversely proportional to the amount of drug in the sample or control.

Calculate the mean and standard deviation (SD) for the absorbance readings of the six 50-ppb fortified control tissue replicates (see F.3.a.). Use these to calculate a decision level (DL) using the formula DL = Mean + 3*SD. A sample will be identified as positive if its absorbance is less than the decision level.

Since the use of PBZ in food animals is not approved in the United States, marginally positive sample (extract) must be reanalyzed in duplicate wells to make sure that the sample is PBZ positive before sending out for confirmation.

CLG-PBZ3.00		Page 8 of 15
Title: Phenylbutazone Residues in Bovine Kidney by ELISA.		
Revision: .00 Replaces: NA Effective: 11/8/2002		

H. HAZARD ANALYSIS

- 1. Method Title. Phenylbutazone Residues in Bovine Kidney by ELISA.
- 2. Required Protective Equipment. Lab coat, safety glasses and gloves.
- 3. Hazards

4.

Procedure Step	Hazard	Recommended Safe Procedures
Methanol	This solvent is flammable and may produce toxic effects to skin, eyes and the respiratory system.	Use reagents in an efficient fume hood away from all electrical devices and open flames.
Acid and base	Corrosive	Wear gloves and safety glasses.
Disposal Proced	dures	

Recommended Safe Procedures

Hazard

Procedure Step

CLG-PBZ3.00		Page 9 of 15
Title: Phenylbutazone Residues in Bovine Kidney by ELISA.		
Revision: .00 Replaces: NA Effective: 11/8/2002		

Methanol See Above Collect waste in tightly sealed container and store away from non-compatibles in a cool, well ventilated, flammable liquid storage area/cabinet for disposal in accordance with local, state, and Federal regulations. Acid and base Can cause burns on skin and eye Neutralize the acid or base for injury disposal down the drain in accordance with local, state, and Federal regulations. Used plates None Dispose of plates in accordance with local, state, and Federal regulations

I. QUALITY ASSURANCE PLAN

Performance Standard

Analyte	Analytical Ran <u>ge</u>	Acceptable Recovery	Acceptable Repeatability (CV)
PBZ	50 - 100 ppb	N/A	N/A

- a. Each sample set must meet all the following criteria before data can be reported:
 - i. The control tissue absorbance should be between 1.0 and 2.0 absorbance units vs. air.
 - ii. The standard curve absorbance values continuously increase from the 100 ppb to the 0 ppb concentration in HRP-EIA buffer solution.
 - iii. The absorbence values continuously increase from the 100 ppb to the 0 ppb fortified control tissue wells.

CLG-PBZ3.00	Page 10 of 15					
Title: Phenylbutazone Residues in Bovine Kidney by ELISA.						
Revision: .00	Effective: 11/8/2002					

- iv. The CV calculated for the six spiked replicates should be less than or equal to 20%.
- b. No false negatives at 50 ppb.
- 2. Critical Control Points and Specifications

Record Acceptable Control

a. E: Swab contact with kidney fluids At least 30 minutes.

b. F.1.b-c & f.2.i-j: Swab contact with At least 10 minutes. extraction buffer.

c. F.3.e: After washing the ELISA plate make sure that the plate is free of bubbles and liquid prior to proceeding to next step of adding K-blue solution.

Evacuate plate of all liquid or bubbles prior to the addition of the K-blue solution.

Readiness To Perform

- a. Analyst Training
 - i. Phase I: Standards- Duplicate external standard curves on each of 3 consecutive days, which will include the following:
 - (a) 0 ng/mL (0 ppb): buffer solution.
 - (b) 15 ng/mL (50 ppb): Dilute100 μL of Working Standard (D.2.c.i) to 1 mL with buffer solution.
 - (c) 30 ng/mL (100 ppb): Dilute 100 $\,\mu$ L of Working Standard (D.2.c.ii) to 1mL with buffer solution.

ii. Phase II: Fortified samples- 3 sets of 10 blank and 10 fortified samples at 50 ppb level over a period of 3 different days.

Note: Phase I and Phase II may be performed concurrently.

Approval Signatures on file

.

CLG-PBZ3.00	Page 11 of 15					
Title: Phenylbutazone Residues in Bovine Kidney by ELISA.						
Revision: .00 Replaces: NA Effective: 11/8/2002						

- iii. Phase III. Check samples for analyst accreditation.
 - (a.) The analyst is to receive 30 ground beef kidney samples. The sample fortifications including the number of blanks are to be blind to the analyst. At least 10 of the 30 samples should be blank and the rest spiked at 50 ppb level. These samples will be prepared and provided by Supervisor or QA Manager (QAM). All samples should be analyzed in duplicate wells. The samples must be randomized throughout the set.
 - (b.) An external curve at 0 ng/mL, 15 ng/mL and 30 ng/mL (equivalent to 0, 50, and 100 ppb, respectively) must be run to help monitor plate acceptability.
 - (c) Report analytical findings to the Laboratory Quality Assurance Manager.
 - (d) A letter from the QAM is required to commence official sample analysis.
- b. Acceptability criteria.
 - i. No false negatives at the 50 ppb level.
 - ii Refer to section J.1 above.
- 4. Intralaboratory Check Samples
 - a. System, minimum contents.
 - i. Frequency: At least 1 weekly per analyst if samples are analyzed.
 - ii. Records of check sample results are to be maintained by the analyst and reviewed by the supervisor and Laboratory QAM.
 - b. Acceptability criteria.

If unacceptable values are obtained, then:

- i. Stop all official analyses by that analyst.
- ii. Take corrective action.
- 5. Sample Acceptability and Stability.
 - a. Matrix: Bovine kidney.
 - b. Sample receipt size: One intact kidney/cow.

CLG-PBZ3.00	Page 12 of 15					
Title: Phenylbutazone Residues in Bovine Kidney by ELISA.						
Revision: .00	Replaces: NA	Effective: 11/8/2002				

- c. Sample receipt condition: Frozen.
- d. Sample storage: Kidney at -20°C and fortified control swabs at -40°C for one week.

6. Sample Set

- a. Each sample set should contain
 - One control tissue blank,
 - ii. 3 fortified tissues: two at 50 ppb and one at 100 ppb levels.
 - iii. Samples.

7. Sensitivity

Minimum proficiency level: 50 ppb.

J. WORKSHEET

Examples of worksheets, on the following two pages, may be copied for use.

CLG-PBZ3.00	Page 13 of 15					
Title: Phenylbutazone Residues in Bovine Kidney by ELISA.						
Revision: .00 Replaces: NA Effective: 11/8/2002						

	PB2	C(PI	HEN	YLBU	JTAZONE)	WORK	SHEET				
Date:								Rev	iewed	by:	
Analyst:											
					SPECIFICAT	IONS					
lepresentative 96-wells ELIS	A Plate				Standard Soluti	ons					
Rev Cel	Cel Cel	Cal	Cel	Cal	PBZ Stock Sol			Conc	: 500 us	#mL	
1 2 3 4 5 6 7	* 9	10	lu	12	PBZ Intermedia				: 250 µg		
. - - - - - - - - - 	╁┼┼	╁	1-1		PBZ Working			Conc	: 150 no	/mL	
	 	╅╴	╂╶┨		PBZ Working	Std (ii)		Conc	: 300 ng	/mi_	
	+ +	+-	1 1	 ∤	50 ppb Std Cur				: 15 ng/		
		+	-		100 ppb Stri Cr	ave/Fortif	ication Sola	Conc	: 30 mg/	mL	
		-		\exists	Reagents						
	 	╅	1		Phosphate Buf	ler .	0.2M				
	+ - 1 -	+-	1		Wash Buffer		1:2 Dilute				
	 -			i	F. 9 . 1 F T		ate 1:180 Dil	uled w	ith FIA I	Rouffer	
					L'IRRECT L'ITES-1	SEC CORRUS	And 1.100 mm	*****	TANK TANK V 1		
Calculations of Reagents for ELISA Kit Assumed of Ding orange conjugate seeds		uples			Kit #						
Amount of Drug convente acode A = No. of wells will be used+ 8 = B = mL of EIA buffer needed = A x 15	zd: (roun 80/1000 ==	ded to	aL.	5'8).	Kit#	bility Cris	ieria		Absor-	Normalize	
A mount of Durg onzyme conjugate needs A = No. of wells will be used + 8 = B = mL of EIA buffer needed = A x 18 C = (A x 300 x 4/9 000 = freened	ic (rous)	ded to	al. 10'a).	•	Kit#	PBZ Cor Based or	teria C Amount/2 (well		Absor-	Normalizo	Faile
A mount of Durg onzyme conjugate needs A = No. of wells will be used + 8 = B = mL of EIA buffer needed = A x 18 C = (A x 300 x 4/9 000 = freened	ic (rous)	ded to	al. 10'a).	•	Kit #	bility Cris	ac Amount/		Absor-	Normalizo	Faile
A.mount of Dust onzyme conjugate needs A = No. of wells will be used + 8 = B = ml. of EIA buffer needed = A x 18	ic (rous)	ded to	al. 10'a).	•	Kit#	PBZ Cor Based or 0.3 g Sm	Amount/		Absor-	Normalize Value	Faile
A mount of Dust onzyme conjugate needs A = No. of wells will be used + 8 = B = mL of EIA buffer needed = A x 18 C = (A x 300 x 4/1000 = fromno	ic (rous	ded to	al. 10'a).	•	Kit # Plate Accepta Reagent Blk	PBZ Cor Based or 0.3 g Sm 0 ng/mL	Amount/A well o o o o o o o o o o o o		Absor-	Normalize Value	Faile
A nount of Dun convene conjugate needs A = No. of wells will be used + 8 = B = mL of EIA buffer needed = A x 18 C = (A x 300 x 4)1000 = (round Amount of DW needed = C 10% of Amount of Wash buffer needed = 10% of	ic (rous	ded to	al. 10'a).	•	Reagent Blk 50 ppb Std	PBZ Cor Based or 0.3 g Sm 0 ng/mL 15 ng/ml 30 ng/ml	Amount// /well O ng L 0.3 ng L 0.6 ng	·	Absor-	Normalize Value	Faile
A mount of Durg onzyme conjugate needs A = No. of wells will be used + 8 = B = mL of EIA buffer needed = A x 18 C = (A x 300 x 4/9 000 = freened	ic (rous	ded to	al. 10'a).	•	Reagent Blk 50 ppb Std 100 ppb Std Tissue Blank	PBZ Cor Based on 0.3 g Sm 0 ng/ml 15 ng/ml 30 ng/ml	Amount// /well p 0 ng L 0.3 ng L 0.6 ng 0 ng	20 pL	Absor-	Normalize Value	Faile
A nount of Dun convene conjugate needs A = No. of wells will be used + 8 = B = mL of EIA buffer needed = A x 18 C = (A x 300 x 4)1000 = (round Amount of DW needed = C 10% of Amount of Wash buffer needed = 10% of	ic (rous	ded to	al. 10'a).	•	Reagent Blk 50 ppb Std 100 ppb Std Tissue Blank 50 ppb Fort	PBZ Cor Based on 0.3 g Sm 0 ng/mL 15 ng/ml 30 ng/mL 15 ng/ml	Amount/ /well p Ong L 0.3 ng L 0.6 ng Ong L 0.3 ng L 0.5 ng	20 μĽ	Absor-	Normalized Value	Faile
A success of Dung convene consume needs A = No. of wells will be used + 8 = B = mL of EIA buffer needed = A x 18 C = (A x 300 x 4)*1000 = (round amount of DW needed = C 10% of Amount of Wash buffer needed = 10% of Instruments and Settings Plate Render: Plate Render:	(rous 80/1000 = led to the c C (0.1	ded to	al. 10'a).	•	Reagent Blk 50 ppb Std 100 ppb Std Tissue Blank	PBZ Cor Based on 0.3 g Sm 0 ng/mL 15 ng/ml 30 ng/mL 15 ng/ml	Amount/ /well p Ong L 0.3 ng L 0.6 ng Ong L 0.3 ng L 0.5 ng	20 μĽ	Absor-	Normalized Value	
A mount of Dun convene conjugate needs A = No. of wells will be used + 8 = B = mL of EIA buffer needed = A x 18 C = (A x 300 x 4)*1000 = (round amount of DW needed = C 10% of Amount of Wash buffer needed = 10% of Instruments and Settings Plate Reader: Plate Reader Fifter: Plate Reader Mode (ABSI):	(rous 80/1000 = led to the c C (0.1	ded to	al. 10'a).	•	Reagent Blk 50 ppb Std 100 ppb Std Tissue Blank 50 ppb Fort	PBZ Cor Based on 0.3 g Sm 0 ng/mL 15 ng/ml 30 ng/mL 15 ng/ml	Amount/ /well p Ong L 0.3 ng L 0.6 ng Ong L 0.3 ng L 0.5 ng	20 μĽ	Absor-	Normalized Value	Faile
A. Mount of Dun convene consume needs A = No. of wells will be used + 8 = B = mL of EIA buffer needed = A x 18 C = (A x 300 x 4)*1000 = (round amount of DW needed = C 10% of Amount of Wash buffer needed = 10% of Instruments and Settings Plate Reader: Plate Reader Filter: Plate Reader Afode (ABS1): Contribuge:	(room) 80/1000 = ied to then C (0.)	ded to	al. 10'a).	•	Reagent Blk 50 ppb Std 100 ppb Std Tissue Blank 50 ppb Fort 100 ppb Fort	PBZ Cor Based or 0.3 g Sm 0 ng/mL 15 ng/ml 30 ng/ml 15 ng/ml 30 ng/ml	Amount// /well p 0 ng L 0.3 ng L 0.6 ng 0 ng L 0.5 ng C 0.5 ng C 0.6 ng C 0.6 ng	kd)	Absor-	Normalized Value	Faile
A.mount of Dun oszyme conjugate needs A = No. of wells will be used + 8 =_ B = mL of EIA buffer needed = A x 18 C = (A x 300 x 4)/1000 = (round Amount of DW needed = C + 10% of Amount of Wash buffer needed = 10% of Instruments and Settings Plate Reader: Plate Reader Fifter: Plate Reader Mode (ABSI): Centifings: Centifings: Centifings:	(room) 80/1000 = ied to then C (0.)	ded to	al. 10'a).	•	Reagent Blk 50 ppb Std 100 ppb Std Tissue Blank 50 ppb Fort 100 ppb Fort	PBZ Cor Based or 0.3 g Sm 0 ng/mL 15 ng/ml 30 ng/ml 15 ng/ml 30 ng/ml	Amount/ /well p Ong L 0.3 ng L 0.6 ng Ong L 0.3 ng L 0.5 ng	kd)	Absor-	Normalized Value	Faile
A. No. of wells will be used + 8 = B = mL of EIA buffer needed = A x 18 C = (A x 300 x 4)/1000 = (round Amount of DW needed = C 10% of Amount of Wash buffer needed = 10% of Instruments and Settlings Plate Render: Plate Render Filter: Plate Render Mode (ABS1): Countifuge: Countifuge Speed: Centrifuge Speed:	(room) 80/1000 = ied to then C (0.)	ded to	al. 10'a).	•	Reagent Bik 50 ppb Std 100 ppb Std Tissue Blank 50 ppb Fort 100 ppb Fort	PBZ Cor Based on 0.3 g Sm 0 ng/mL 15 ng/ml 30 ng/ml 15 ng/ml 15 ng/ml	Amount// /well p 0 ng L 0.3 ng L 0.6 ng 0 ng L 0.5 ng (end) L 0.6 ng (end)	etd)	Absorbence	Normalize Value	Faile
A. No. of wells will be used+ 8 =	(round) (ro	ded to	al. 10'a).	•	Reagent Bik 50 ppb Std 100 ppb Std Tissue Blank 50 ppb Fort 100 ppb Fort	PBZ Cori Based or 0.3 g Sm 0 ng/mL 15 ng/ml 30 ng/mL 15 ng/ml 30 ng/ml	deria Amount/ /well Dong L 0.3 ng L 0.6 ng Ong L 0.5 ng (et L 0.6	etd)	Absorbence	Normalize Value	Pailo (ANT)
A success of Dung convene consistent encodes A = No. of wells will be used + 8 = B = mL of EIA buffer needed = A x 18 C = (A x 300 x 4)*1000 = (round amount of DW needed = C 10% of Amount of Wash buffer needed = 10% of Amount of Wash buffer needed = 10% of Instruments and Settings Plate Render: Plate Render Filter: Plate Render Mode (ABSI): Countifuge: Centrifuge Speed: Centrifuge Time: Centrifuge Temp: Centrifuge Render: Centrifuge Render: Centrifuge Render: Centrifuge Contri	(round) (ro	ded to	al. 10'a).	•	Reagent Bik 50 ppb Std 100 ppb Std Tissue Blank 50 ppb Fort 100 ppb Fort	PBZ Cori Based or 0.3 g Sm 0 ng/mL 15 ng/ml 30 ng/mL 15 ng/ml 30 ng/ml	deria Amount/ /well Dong L 0.3 ng L 0.6 ng Ong L 0.5 ng (et L 0.6	etd)	Absorbence	Normalize Value	Pailo (NY)
A. Mo. of Wells will be used + 8 =_ B = mL of EIA buffer needed = A x 18 C = (A x 300 x 4)/1000 = (numerical form) (numerical	(round) (ro	ded to	al. 10'a).	•	Reagent Bik 50 ppb Std 100 ppb Std Tissue Blank 50 ppb Fort 100 ppb Fort Cestimatio (Based on 6 re	PBZ Cori Based or 0.3 g Sm 0 ng/mL 15 ng/ml 30 ng/mL 15 ng/ml 30 ng/ml An ef Decis	Amount// /well p Ong L O.3 ng L O.6 ng U O.5 ng Ong L O.6 ng Ong Ong D On	etd)	Absorbence	Normalize Value	Pailo (PH)
A. No. of wells will be used + 8 =_ B = mL of EIA buffer needed = A x 18 C = (A x 300 x 4)*1000 = (round Amount of DW needed = C 10% of Amount of DW needed = C 10% of Amount of Wash buffer needed = 10% of Instruments and Settings Plate Reader: Plate Reader Filter: Plate Reader Mode (ABS1): Countifuge: Countifuge Temp: Contribuge Temp: Contribuge: Freeze: Proceed: Procede: Bulance:	(round) (ro	ded to	al. 10'a).	•	Reagent Bik 50 ppb Std 100 ppb Std Tissue Blank 50 ppb Fort 100 ppb Fort Cartesian on 6 re Replicate Num	PBZ Core Based or 0.3 g Sm 0 ng/ml 15 ng/ml 30 ng/ml 15 ng/ml 30 ng/ml 16 ng/ml 16 ng/ml 17 ng/ml 18 ng/ml 19 ng/ml 19 ng/ml	ieria Amount/ /well p Ong L 0.3 ng L 0.6 ng Ong L 0.3 ng (et Ong L 0.5 ng (et One 50 ppb from 1/20 pL/ Ong	etd) std) ortification	Absorbence	Normalize Value	Pailo (PH)
A.mount of Dun courme conjugate needs A = No. of wells will be used + 8 =_ B = mL of EIA buffer needed = A x 18 C = (A x 300 x 4)/1000 = (numerical form) Amount of DW needed = C + 10% of Amount of Wash buffer needed = 10% of Amount of Wash buffer needed = 10% of Instruments and Settlings Plate Reader: Plate Reader Fifter: Plate Reader Mode (ABSI): Contribuge Temp: Contribuge Temp: Centrifuge Temp: Centrifuge Reader: Centrifuge Reader: Freeze:	(round) (ro	ded to	al. 10'a).	•	Reagent Bik 50 ppb Std 100 ppb Std Tissue Blank 50 ppb Fort 100 ppb Fort Cestimatio (Based on 6 re	PBZ Core Based or 0.3 g Sm 0 ng/ml 15 ng/ml 30 ng/ml 15 ng/ml 10 ng/ml	Amount// /well p Ong L O.3 ng L O.6 ng U O.5 ng Ong L O.6 ng Ong Ong D On	etd) std) ortification	Absorbence	Normalize Value	Pailo (NY)

0.3 ng (estimated) 0.3 ng (estimated)

SD: $DL = SD \times 3 =$

CLG-PBZ3.00	Page 14 of 15					
Title: Phenylbutazone Residues in Bovine Kidney by ELISA.						
Revision: .00						

PBZ SAMPLE RESULTS WORKSHEET

Analyst:					
Date Star	ted:				
Date Con	npleted:				
Set Numl	ber:				
Reviewe	d By:				
DL (Deci	ision Level A	bsorbance Cal	culated from PI	3Z Worksheet)	_
			if its absorbanc		
Position		Form	Absorbance	Normalized	Results
	Lab No.	No		value	(+) or
					(-)
	Tissue Blk				

Position		Form	Absorbance	Normalized	Results
	Lab No.	No		value	(+) or
					(-)
	Tissue Blk				

-					
				1	
					:
		 			
			+ 400 m do		

CLG-PBZ3.00	Page 15 of 15				
Title: Phenylbutazone Residues in Bovine Kidney by ELISA.					
Revision: .00	Replaces: NA	Effective: 11/8/2002			

K. REFERENCE

Susan B. Clark, Food and Drug Administration, Denver District Laboratory, Denver Federal Center April 2001. Phenylbutazone residues in Bovine Kidney by ELISA,

CLG-PBZ3.00	Page 16 of 15				
Title: Phenylbutazone Residues in Bovine Kidney by ELISA.					
Revision: .00	Replaces: NA	Effective: 11/8/2002			

Approved by: Date

Stephen Powell 10/23/2002

Leon Ilnicki 10/23/2002

Jess Rajan 10/24/2002